# Practice Test: Question Set - 08

**1. The force in**

*AD*of the truss shown in given figure, is- (A) 4.0

*t*compression

- (B) 3.0

*t*compression

- (C) 0.5

*t*compression

- (D) 0.5

*t*tension

**2. The equivalent length of a column of length**

*L*, having one end fixed and other end hinged, is- (A) 2

*L*

- (B)

*L*

- (C)

*L*/2

- (D)

*L*/√2

**3. By applying the static equations**

*i.e.*Σ*H*= 0, Σ*V*= 0 and Σ*M*= 0, to a determinate structure, we may determine- (A) Supporting
reactions only

- (B) Shear forces
only

- (C) Bending
moments only

- (D) All the
above

**4. A lift of weight**

*W*is lifted by a rope with an acceleration*f*. If the area of cross-section of the rope is*A*, the stress in the rope is- (A) [

*W*(1 +

*f*/

*G*)]/

*A*

- (B) (1 -

*g*/

*f*)/

*A*

- (C) [

*W*(2 +

*f*/

*G*)]/

*A*

- (D) [

*W*

*(*2 +

*g*/

*f)*]/

*A*

**5. Co-efficient of wind resistance of a circular surface, is**

- (A) 1/2

- (B) 1/3

- (C) 2/3

- (D) 3/2

**6. The equation of a parabolic arch of span ‘**

*l’*and rise ‘*h’*, is given by- (A)

*y*=

*h*/

*l*

^{2}

*× (1 -*

*x*)

- (B)

*y*= 2

*h*/

*l*

^{2}

*× (1 -*

*x*)

- (C)

*y*= 3

*h*/

*l*

^{2}

*× (1 -*

*x*)

- (D)

*y*= 4

*h*/

*l*

^{2}

*× (1 -*

*x*)

**7. A rectangular column shown in the given figure carries a load**

*P*having eccentricities*e*and_{x }*e*along_{y}*X*and*Y*axes. The stress at any point (*x, y*) is- (A) (

*p*/

*bd*) [1 + (12

*e*/

_{y.}y*d*

^{2}) + (12

*e*

_{x. }*x*/

*d*

^{2})]

- (B)

*p*[1 + (6

*e*/

_{y.}y*b*) + (6

*e*

_{x. }*x*/

*b*)]

- (C) (

*p*/

*bd*) [1 + (6

*e*/

_{y.}y*d*) + (6

*e*

_{x. }*x*/

*b*)]

- (D) (

*p*/

*bd*) [1 + (

*e*/

_{y.}y*d*) + (

*e*

_{x. }*x*/

*d*)]

**8. In case of principal axes of a section**

- (A) Sum of
moment of inertia is zero

- (B) Difference
of moment inertia is zero

- (C) Product of
moment of inertia is zero

- (D) None of
these

**9. A simply supported beam carries a varying load from zero at one end and**

*w*at the other end. If the length of the beam is*a*, the shear force will be zero at a distance*x*from least loaded point where*x*is- (A)

*a*/2

- (B)

*a*/3

- (C)

*a*/√3

- (D)

*a*√3/2

**10. The locus of the end point of the resultant of the normal and tangential components of the stress on an inclined plane, is**

- (A) Circle

- (B) Parabola

- (C) Ellipse

- (D) Straight
line

**11. The shape factor of standard rolled beam section varies from**

- (A) 1.10 to 1.20

- (B) 1.20 to 1.30

- (C) 1.30 to 1.40

- (D) 1.40 to 1.50

**12. In the cable shown in the given figure, the minimum tension occurs at**

- (A)

*A*

- (B)

*B*

- (C)

*C*

- (D) Between

*A*and

*C*

**13. Principal planes are subjected to**

- (A) Normal
stresses only

- (B) Tangential
stresses only

- (C) Normal
stresses as well as tangential stresses

- (D) None of
these

**14.**

*A*and_{b}*A*are the cross sections of bronze and copper bars of equal length, σ_{c}*, σ*_{b}*are their respective stresses due to load*_{c}*P*. If*P*and_{b}*P*are the loads shared by them, (where_{c}*E*and_{b }*E*are their modulii)._{c}- (A) σ

*/σ*

_{b}*=*

_{c}*E*/

_{b }*E*

_{c}- (B)

*P*=

*P*+

_{b}*P*

_{c}- (C)

*P*=

*A*σ

_{b}*+*

_{b}*A*σ

_{c}

_{b}- (D) All the
above

**15. A rolled steel joist is simply supported at its ends and carries a uniformly distributed load which causes a maximum deflection of 10 mm and slope at the ends of 0.002 radian. The length of the joist will be,**

- (A) 10 m

- (B) 12 m

- (C) 14 m

- (D) 16 m

**View All Answers**

## 0 blogger:

## Post a Comment